The preventive properties of Mastic gum (*Pistacia lentiscus*) aqueous extract on rats with stomach ulcers

Asmaa Mahmoud A. Mohamed

Faculty of Specific Education- Home Economics Department – Aswan University

Abstract

Gastric ulcers are common conditions that affect a large percentage of people worldwide. Modern medications have numerous negative consequences of treating illnesses as well as being costly. Therefore, the purpose of our study was to examine and compare the effects of mastic gum aqueous extract (100, 200, and 300 mg/kg of body weight) on the rats suffering from stomach ulcers. Five groups of thirty rats were created: group one was served as a negative control and the second group with the gastric ulcers was kept as the positive control group. The other three groups with gastric ulcer were received the three different doses of mastic aqueous extract. In comparison to the positive group, the treated groups with the mastic aqueous extract exhibited a substantial improvement in pH values, an improvement in ulcer regions, and an increase in healing rate. In addition, the improvement in the activities of the antioxidant enzymes CAT, GPx, and SOD. Based on this results, we deduce that aqueous mastic extracts at varying concentrations (100, 200, and 300 mg/kg body weight) protect rats' stomachs from developing acute experimental stomach ulcers.

Keywords: Mastic gum (*Pistacia lentiscus*), Stomach Ulcers

1- INTRODUCTION

Gastric ulcers are widespread illnesses that affect a significant portion of the global population. (Insaf, 2018) The hallmark of peptic ulcer disease is the breakdown of the gastrointestinal tract's inner lining due to either pepsin or gastric acid release. It penetrates the stomach epithelium's muscularis propria layer. Usually, it affects the proximal duodenum and stomach. The jejunum,
distal duodenum, or lower esophagus could be affected. Patients with gastric ulcers typically have epigastric pain 15–30 minutes after eating, whereas duodenal ulcer patients typically experience pain 2–3 hours later. (Kelly et al., 2009 and Talia et al., 2023).

Herbal medicines with therapeutic potential emerge as appealing alternative treatments, despite the contemporary era's great advancements in the medical business. Because herbal medicines are more compatible with the human body and have less side effects, they continue to be the go-to option for treating a wide range of illnesses for roughly 75–80% of the world's population, mostly in underdeveloped nations (Nahida et al., 2012).

Mastiha, also known as Pistacia lentiscus var. Chia or Pistacia lentiscus L. var latifolius Coss, is a naturally occurring aromatic resin derived from the trunk and branches of the mastic tree. Chios mastic gum is another name for it (Ierapetritis, 2010). Greek traditional medicine has been using gum mastic for more than 2500 years, primarily for gastrointestinal conditions like gastralgia and peptic ulcers. Mastic is mentioned and recommended as a healing ingredient in the writings of Greek physicians, including Dioscorides and Galen. These days, it is utilized in dentistry, fragrance, chewing gum manufacturing, Mediterranean cooking, as a flavoring, and in Greek traditional medicine to treat gastritis and prevent peptic ulcers (Paraschos et al., 2012).

The medicinal potential of Chios mastic gum has also been demonstrated through clinical treatments and experiments. 2015 saw the European Medicines Agency (EMA) designate Pistacia lentiscus L. resin, also known as mastic, as an herbal medicinal substance with traditional usage for two therapeutic indications: moderate dyspeptic disorders and skin inflammation/healing of minor wounds. Chios mastic gum has been extensively used in food
supplements, cosmetics, and pharmaceutical goods in recent years. It is also being studied in the field of pharmacotechnology (Vasiliki et al., 2020).

The current study objective was to examine and contrast the effects of varying doses (100, 200, and 300 mg/kg of body weight (b.wt.) of mastic gum aqueous extract on the pH values and volume of gastric juice, ulcer length, and curative ratio of gastric ulcer in rats. Reliable parameters for data comparison were presented, including activities of antioxidant enzymes (SOD, GPX, and CAT). A stomach ulcer's histopathological examination was completed.

2- MATERIALS AND METHODS

2.1 Materials

2.1.1 Herbs
Mastic gum was purchased as crude dried material from a local Company for Medicinal Plants and Herbs, Cairo, Egypt.

2.1.2 Animals
Thirty male albino rats, Sprague Dawley strain weighing 160±5g, were obtained from the Laboratory Animal Colony, Helwan, Egypt.

2.2 Methods:

2.2.1 Preparation of Mastic Gum Aqueous Extract
Using 10g of dried material and 100 ml of distilled water, the aqueous extract of mastic gum was made by boiling it for five minutes at 100°C. After that, they were filtered and concentrated using a Rotary vapor apparatus. Then the extract was stored at -20°C until used (Kassi et al., 2004).

2.2.2 Preparation of the Basal Diet
The basal diet (AIN-93M) was formulated to meet recommended nutrients levels for rats as mentioned by Reeves et al., (1993).
2.2.3 Experimental Design

Before beginning the trial, to acclimate all animals was kept in healthy circumstances with humidity, temperature (20–25°C), and light (12–hour light–12–hour dark cycle) and were also fed a baseline diet and given access to water on a free-choice basis. Then after an acclimation, rats were split into five groups of the same weight and quantity (six rats each group). The first main group was kept as a negative control group and fed the basal diet and given orally saline solution at a volume of 1 ml/100 gm b.wt. The remaining animals (n = 24) were given oral ethanol (0.5 ml/100g) to induce gastric ulcer as described by Hollander et al., (1985). Then the affected rats by stomach ulcers were divided into four groups. The second group was the positive control and feed on the basal diet, while the third, fourth and fifth groups were fed a diet and given orally the aqueous extract of mastic by a tube feeding for two weeks at a dose of 100, 200, and 300 mg/kg b. wt., respectively.

2.2.4 Gastric Ulcer Index

During this investigation, the methodology outlined by Agrawal et al., (2000) was utilized. In summary, all rats were anaesthetized with an overdose of diethyl ether, removed their stomachs, and then had saline rinsed after receiving ethanol for four hours. A test tube was used to collect the gastric juice. After that, stomachs were opened along their larger curvature, cleaned with saline, and checked for gastric ulcers under a dissecting microscope. The ulcer index was calculated by adding the lengths of all the ulcers in each animal. The following formula was used to determine the curative ratio for each group:

\[
\text{Curative ratio (CR)} = \left(\frac{\text{LC} - \text{LT}}{\text{LC}} \right) \times 100
\]

LC: The length of gastric ulcer in positive group
LT: The length of gastric ulcer in treated group.
2.2.5 Determination of Gastric Juice Acidity
Acidity degree (pH) of gastric juice was determined by using pH meter apparatus (HI 9021).

2.2.6 Determination of Gastric Juice Volume
Collected gastric juices were centrifuged at 500 rpm for 5 minutes then separated and measured volume by graduated cylinder.

2.2.7 Assessment of Antioxidant Enzymes
Assays the activities of antioxidant enzymes glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT) were estimated according to described methods by (Paglia and Valentaine, 1979), (Spitz and Oberley, 1989) and (Sinha, 1972), respectively.

2.2.8 Histopathological Examination
The stomachs of all scarified rats were removed and submerged in a 10% formalin solution. After that, the fixed stomach specimens underwent trimming, washing, and dehydration in progressively higher alcohol grades. After being cleaned with xylol, the specimens were embedded in paraffin, sectioned at a thickness of 4-6 microns, and stained with hematoxylin and eosin stain to examine the stomach, as per the instructions provided by (Carleton, 1979).

2.2.9 Statistical Analysis
The mean value ± standard error (SE) was used to express the results. The Dunk test, a multiple range post-hoc test, was used in the statistical analysis utilizing SPSS, PC statistical software (Verion 18.0 SPSS Inc., Chicago, USA). ANOVA, or one-way analysis of variance, was used to analyze the data. P<0.05 was used to determine whether the values were substantially different (Snedecor and Cochran, 1980).
3. RESULTS AND DISCUSSION

3.1. PH of Gastric Juice

The results indicated that there is a significant decrease in the pH value of gastric juice of the positive group, compared to that of the control group. While the pH values of gastric juice increased in the treated groups with mastic aqueous extract, compared to the positive group. The PH values in rat treated with mastic gum aqueous extract at different doses are listed in Table (1). When compared to the positive group, the treated group with a 300 mg/kg of b wt. extract had the best results. These findings corroborate with a study of Al-Zahid, (1993) who split 24 rats into three groups: six animals were in the control group, six animals had reserpine-induced peptic ulcers, and twelve animals received mastic treatment. Both forms of ulcers are fully treated with mastic because it provides a barrier against stomach acids. These findings are in line with research (Da-Eun et al., 2014) showing that mastic gum can reduce the production of stomach acid by controlling the hormone system linked to histamine.

Table (1): The effect of different doses of Mastic gum aqueous extract on the pH values of gastric juice

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameter as Mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH of gastric juice</td>
</tr>
<tr>
<td>Control group</td>
<td>5.98± 0.08 a</td>
</tr>
<tr>
<td>Positive group</td>
<td>4.62± 0.13 c</td>
</tr>
<tr>
<td>Treated groups with aqueous extracts at a doses of::</td>
<td></td>
</tr>
<tr>
<td>100mg/kg b. wt.</td>
<td>5.46± 0.13 b</td>
</tr>
<tr>
<td>200mg/kg b. wt.</td>
<td>5.84± 0.08 a</td>
</tr>
<tr>
<td>300mg/kg b. wt.</td>
<td>6.04± 0.37 a</td>
</tr>
</tbody>
</table>

Each value is shown as mean ± SE, mean in the same column with different superscript letters differ significantly (P≤ 0.05).
3.2. Volume of Gastric Juice
The volume of gastric juice (cm3) of treated rats with varying dosages of the aqueous extract of mastic is displayed in Table 2. The results demonstrated that the volume of gastric juice significantly increased in the positive group, compared to that of the healthy control group, it significantly reduced in the treatment groups, compared to the positive group.

3.3. Length of Gastric Ulcer
The results in Table 2 showed significant decreases in the stomach ulcer lengths (mm) in treated rats with the different doses of mastic aqueous extract compared to the positive group.

Table (2): The effect of different doses of Mastic gum aqueous extract on volume of gastric juice (cm3), length of gastric ulcer (mm) and Curative ratio

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>Volume</th>
<th>Length</th>
<th>Curative ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>1.86 ± 0.13 d</td>
<td>0.00 ± 0 e</td>
<td>100.00 ± 0 a</td>
<td></td>
</tr>
<tr>
<td>Positive group</td>
<td>4.80 ± 0.21 a</td>
<td>6.90 ± 0.12 a</td>
<td>0.00 ±0 e</td>
<td></td>
</tr>
<tr>
<td>Treated groups with aqueous extracts at doses of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100mg/kg b. wt.</td>
<td>3.28 ± 0.21 b</td>
<td>4.24 ± 0.20 b</td>
<td>38.50 ± 3.96 d</td>
<td></td>
</tr>
<tr>
<td>200mg/kg b. wt.</td>
<td>2.94 ± 0.37 c</td>
<td>2.64 ± 0.13 c</td>
<td>61.72 ± 2.15 c</td>
<td></td>
</tr>
<tr>
<td>300mg/kg b. wt.</td>
<td>2.00 ± 0.12 d</td>
<td>1.26 ± 0.15 d</td>
<td>81.72 ± 2.30 b</td>
<td></td>
</tr>
</tbody>
</table>

Each value is shown as mean ± SE, mean in the same column with different superscript letters differ significantly (P≤ 0.05).

3.4 Curative Ratio
The findings in Table 2 demonstrated a significant improvement in the healing rates in the treated groups with mastic aqueous extract; In the third group healing rates were 38.50 ± 3.96, while the fifth group healing rates were 81.72 ± 2.30 after receiving 300mg/kg b. wt. of mastic aqueous extract. These
findings support the study of Abdel-Jalil et al., (2005) who suggested that mastic gum’s antioxidant and anti-secretory qualities might also contribute to its anti-ulcer effect. According to this study, eating Pistacia Atlantica gum every day for a month alleviates the symptoms of diabetic gastroparesis (Fatemeh et al., 2018). These findings are in line with research of Neda et al., (2019) who indicated that Pistacia Atlantica gum extract may be useful in protecting rats from developing stomach ulcers brought on by ethanol.

3.5 Glutathione Peroxidase (GPX), Catalase (CAT), and Superoxide Dismutase (SOD).

The body has an intricate system of defense against free radicals, which can be divided into first, second, third and even fourth line defense antioxidants. This system depends on radical invasion. Endogenous enzymatic and non-enzymatic antioxidants: their function and efficacy as the first line of defense. In order to prevent free radicals from harming essential biomolecules and eventually bodily tissues, these molecules work together to combat them. They are significant and essential to the complete antioxidant defense strategy based on how they react to general free antioxidants, which essentially consist of glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) (Ighodar and Akinloye, 2018). In comparison to the positive group, the results in Table 3 indicated that there a significant rise in the activities of glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) in treated rats with mastic gum aqueous extract. These outcomes concurred with the earlier discoveries of Fkour et al., (2017) who indicated that P. Atlantica mastic extract has a suitable effect on wound healing and can be employed as a natural antioxidant. Researchers are interested in Pistacia species because of their diverse biological properties, including the ability to act as an antioxidant, antimicrobial, and anti-inflammatory. These properties are primarily attributed
to the presence of various phenolic components, which have been studied in the plant's leaves, kernels, and hulls \((\text{Hosseinzadeh et al.}, \ 2012)\). Apart from its conventional application in treating stomach ulcers, mastic resin has been shown to possess anti-bacterial, antifungal, antioxidant, hepatoprotective, and anti-carcinogenic qualities in products derived from \(P. \text{ lentiscus}\) \((\text{Landau et al.}, \ 2014 \text{ and } \text{Fakour et al.}, \ 2017)\).

3.6 Thiol-Containing Tripeptide Glutathione (GSH)

Thiol-containing tripeptide glutathione (GSH) is essential for both signaling pathways and the body's defense against oxidative damage. Glutathione disulfide (GSSG) is the product of oxidation of GSH. Oxidative stress and cell functioning are shown by the molar ratio and amounts of GSH and GSSG. Growing importance are medical applications for glutathione status restoration and assessment of redox homeostasis in diverse clinical conditions \((\text{Péter et al.}, \ 2009)\). As shown in Table 3, The tripeptide glutathione (GSH) level was found to be lower in the positive group than in the control group and to be higher in the groups that received mastic aqueous extract treatment.

Table (3): The Effect of different doses of Mastic gum aqueous extract on antioxidant enzymes (SOD, GPX, CAT and GSH)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SOD</th>
<th>CAT</th>
<th>GPx</th>
<th>GSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>760.3± 34.68 (^c)</td>
<td>57.67± 23.02 (^c)</td>
<td>45.33± 18.00 (^a)</td>
<td>2.98± 0.20 (^b)</td>
</tr>
<tr>
<td>Positive group</td>
<td>749.7± 47.39 (^d)</td>
<td>66.33 ± 23.02 (^b)</td>
<td>40.67± 12.58 (^a, b)</td>
<td>2.33± 0.58 (^c)</td>
</tr>
<tr>
<td>100mg/kg b. wt.</td>
<td>925.7± 27.51 (^a)</td>
<td>73.33± 13.42 (^a)</td>
<td>37.67± 8.62 (^c)</td>
<td>3.43± 0.66 (^a)</td>
</tr>
<tr>
<td>200mg/kg b. wt.</td>
<td>904.0± 45.63 (^b)</td>
<td>68.67 ± 7.09 (^b)</td>
<td>37.67± 11.93 (^c)</td>
<td>3.19± 1.10 (^a,b)</td>
</tr>
<tr>
<td>300mg/kg b. wt.</td>
<td>929.0± 32.18 (^a)</td>
<td>75.67± 6.11 (^a)</td>
<td>35.00 ± 7.81 (^d)</td>
<td>3.56± 0.54 (^a)</td>
</tr>
</tbody>
</table>

Each value is shown as mean ± SE, mean in the same column with different superscript letters differ significantly (P≤ 0.05).
Histopathological Examinations:
Rats from group 1's stomachs demonstrated, under a microscope, the typical histoarchitecture of the gastric layers—mucosa, submucosa, muscular is, and serosa (Figs. 1, 2 & 3). Submucosal edema, congestion of mucosal blood vessels, focal necrosis of the gastric mucosa associated with mucosal inflammatory cell infiltration, and submucosal inflammatory cell infiltration were among the histopathologically damaged stomachs of the rats in group 2 (Figs. 4, 5, 6 & 7). These results are consistent with the study Arawwawala et al., (2010). Ethanol-induced gastric ulcer is a usual, convenient animal model for the investigation of gastro protective drugs. The role of ethanol is explained by its ulcer genic effect. Ethanol progresses disarrangement in mucosal microcirculation and ischemia, produces free radicals, and releases endothelium.

A few sections from group 3 were investigated, and while some showed no histopathological abnormalities (Figs. 8 & 9), other sections showed submucosal edema (Figs. 10, 11 & 12), congestion of submucosal blood vessels (Fig. 10), and infiltration of submucosal inflammatory cells (Figs. 11 & 12).
Fig. (3): Rat stomach photomicrograph from group 1 displaying the typical gastric layer histoarchitecture (H & E stain, X 100).

Fig. (4): Photomicrograph of stomach of rat from group 2 showing focal necrosis of gastric mucosa (black arrow) associated with mucosal inflammatory cells infiltration (red arrow) and submucosal edema (blue arrow) (H & E stain, X 100).

Fig. (5): Photomicrograph of rat stomach from group 2 demonstrating submucosal edema (red arrow), congestion of mucosal blood vessels (blue arrow), and focal necrosis of the gastric mucosa associated with infiltration of mucosal inflammatory cells (black arrow) (H & E stain, X 100).

Fig. (6): A photomicrograph of a rat from group 2’s stomach demonstrates submucosal edema (red arrow), an infiltration of mucosal inflammatory cells (black arrow), and focal necrosis of the gastric mucosa. (H & E stain, X 100).

Fig. (7): A photomicrograph of a rat from group 2’s stomach demonstrating infiltration of inflammatory cells (blue arrow), submucosal edema (red arrow), and focal necrosis of the stomach mucosa (H & E stain, X 100).

Fig. (8): Histopathological abnormalities absent from the stomach photomicrograph of a rat from group 3. (H & E stain, X 100).
Fig. (9): Histopathological abnormalities absent from the stomach of a rat from group 3. (H & E stain, X 100).

Fig. (10): Photomicrograph of a rat from group 3’s stomach demonstrating submucosal blood vessel congestion (red arrow) and submucosal edema (black arrow). (H & E stain, X 100).

Fig. (11): Photomicrograph of a rat’s stomach from group 3 demonstrating submucosal edema (black arrow) and a little infiltration of inflammatory cells (red arrow). (H & E stain, X 100).

Fig. (12): A photomicrograph of a group 3 rat's stomach demonstrating a little infiltration of inflammatory cells and submucosal edema (black arrow) (H & E stain, X 100).

Fig. (13): Rat from group 4's stomach photomicrograph demonstrating no histopathological damage (H & E stain, X 100).

Fig. (14): Rat from group 4’s stomach photomicrograph demonstrating no histopathological damage (H & E stain, X 100).
Fig. (15): Photomicrograph of group 4 rat stomach demonstrating mucosal blood vessel congestion (black arrow) (H & E stain, X 100).

Fig. (16): Rat photomicrograph from group 4 exhibiting mild submucosal edema (black arrow) (H & E stain, X 100).

Fig. (17): A photomicrograph of a rat from group 4’s stomach reveals submucosal edema (blue arrow), a few inflammatory cells infiltration (red arrow), and mucosal inflammatory cell infiltration (black arrow). (H & E stain, X 100).

Fig. (18): Rat stomach from group 5 photomicrograph displaying histologically normal gastric layers (H & E stain, X 100).

Fig. (19): Rat stomach from group 5 photomicrograph displaying histologically normal gastric layers (H & E stain, X 100).

Fig. (20): Rat from group 5’s stomach photomicrograph displaying a small amount of submucosal edema (black arrow) and a small infiltration of inflammatory cells (red arrow) (H & E stain, X 100).
REFERENCES

الملخص العربي
الخصائص الوقائية للمستخلص المائي لصمغ المستكة (الفستق العدسي) على الفئران المصابة بقرحة المعدة

أسماء محمود أحمد محمد
كلية التربية النوعية – قسم الاقتصاد المنزلي – جامعة أسوان

قرحة المعدة هي حالة شائعة تؤثر على نسبة كبيرة من الناس في جميع أنحاء العالم. الأدوية الحديثة لها عواقب سلبية عديدة في علاج الأمراض، بالإضافة إلى كونها مكلفة. لذلك كان الغرض من دراستنا هو فحص ومقارنة تأثيرات 100 و 200 و 300 ملجم/كم من المستخلص المائي لصمغ المستكة على الفئران المصابة بقرحة المعدة. تم إنشاء خمس مجموعات مكونة من ثلاثين فأراً: مجموعة واحدة كانت بمثابة السيطرة، والمجموعة الثانية كانت مجموعة إيجابية مع القرحة. تلقت ثلاث مجموعات جرعات مختلفة من المستخلص المائي للمستكة. تم تقييم العوامل التالية: مستويات الرقم الهيدروجيني، حجم عصير المعدة، منطقة القرحة، معدل الشفاء، إنزيمات المضادة للأكسدة، والتحقيق النسيجي للمعدة.

بالمقارنة مع المجموعة الإيجابية، أظهرت المجموعات المعالجة بالمستخلص المائي للمستكة تحسنًا كبيرًا في قيم الرقم الهيدروجيني، وتحسينًا في مناطق القرحة، وزيادة في سرعات الشفاء. عند مقارنتها بالمجموعة الإيجابية، زادت أيضًا إنزيمات الكاتلاز المضادة للأكسدة (CAT)، والجلوتاثيون بيروكسيديز (GPx)، وديسموتاز الفائق أكسيد (SOD). وبناء على ذلك نستطيع أن المستقبلات المائية للمستكة بتراكيز مختلفة (100، 200، 300 ملجم/كم من وزن الجسم) تحمي معدة الفئران من الإصابة بقرحة المعدة التجريبية الحادة.

الكلمات المفتاحية: المستكة (الفستق العدسي) وقرحة المعدة